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Abstract 

Recent advancements in fiber laser technology have increased interest in target 

material interactions and the development of thermal protection layers for tactical laser 

defense.  A significant material of interest is carbon fiber reinforced polymers due to their 

increased use in aircraft construction.  In this work, the thermal response of carbon fiber-

carbon nanotube (CNT) hybrid composites exposed to average irradiances of 0.87-6.8 

𝑊𝑊/𝑐𝑐𝑚𝑚2 were observed using a FLIR sc6900 thermal camera.  The camera had a pixel 

resolution of 640x512 which resulted in a spatial resolution of 0.394x0.383 mm/pixel for 

the front and 0.463x0.491 mm/pixel for the back.  The hybrid samples that showed the 

highest absolute and relative reduction in heat penetration contained three CNT outer 

layers on the front and backside and one CNT center layer respectively.  When compared 

to the 8-layer carbon fiber control sample, they demonstrated a backside peak 

temperature reduction of 120 ℃ and 85 ℃ respectively.  This reduction in temperature 

appears to be due to the production of an insulating layer produced by the trapping of 

organic volatile gases in the CNT layers.  The insulating layer reduces the through 

thickness thermal conductivity preventing heat conduction to the backside.  Scanning 

electron microscope images and optical microscope images are presented that support 

this explanation.    The introduction of CNT layers to carbon fiber reinforced composites 

reduced heat penetration to deeper layers preventing/delaying thermal degradation of 

those layers when exposed to laser irradiation. 
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LASER INDUCED THERMAL DEGRADATION OF CARBON FIBER-CARBON 

NANOTUBE HYBRID LAMINATES 

 
I.  Introduction 

General Issue 

The conceptual idea for the laser was introduced in a paper published in 1916 by 

Einstein detailing a derivation of Plank radiation law.  In this paper Einstein A and B 

coefficients were introduced, and the idea that photons could be used to extract identical 

photons from excited atoms via stimulated emission was postulated [1].    Forty-Four 

years later, Theodore Maimen demonstrated the validity of Einstein’s idea by making a 

ruby laser at Hughes Research Labs.  The invention of the laser started a technological 

revolution, and within six years, military interest in laser weapons led to the development 

of a 50 kW 𝐶𝐶𝑂𝑂2 laser.  Despite many efforts, viable high-power laser weapon systems of 

this power have not been fielded [2].  However, recent advancements in fiber laser 

technology has created an increased interest in fielding tactical laser weapons systems.  

As of 2008, single mode fibers have achieved over 3 𝑘𝑘𝑊𝑊 of power and incoherently 

beam combined laser systems have achieved over 90% propagation efficiencies across 

1.2 𝑘𝑘𝑚𝑚 of moderate turbulence [3].  Due to this emerging threat, a large variety of 

materials used in aerospace applications will soon be subject to potential laser attacks.  

This evolving vulnerability requires a knowledge of thermal material degradation 

processes and material modifications that could be used to mitigate the effects of tactical 

laser weapon systems. 
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Carbon Fiber Reinforced Polymers 

A significant material of interest in regard to tactical laser weapon systems is 

carbon fiber reinforced polymers (CFRPs) due to their increased use in aircraft for their 

high specific strength, stiffness, and customizability [4].  The thermal degradation 

process of CFRP materials is complex.  Heating via laser irradiation initiates degradation 

processes that cause spatial and temporal evolution of material properties including 

emissivity, thermal conductivity, and heat capacity of the material.  Additionally, the 

material undergoes a variety of endothermic decomposition reactions, with the release of 

volatile organic products.  These organic volatiles cause surface combustion of carbon 

fiber composite materials under piloted ignition or laser heated self-ignition.  This surface 

combustion contributes exothermically to the degradation process and can ignite regions 

in which organic volatiles’ temperature has not reached critical temperatures [5].  These 

complexities make it difficult to model the thermal evolution of composite systems and 

have historically pushed high energy laser lethality testing to rely on data supported 

empirical models [6].   

The test matrix for this strategy is exceedingly large, due to the large number of 

materials, laser properties, and various engagement parameters that can be investigated. 

However, using thermal cameras, temporal and spatial temperature measurements of 

CFRP material undergoing degradation can be used to constrain models and allow for the 

estimation of unknown parameters such as the reaction rates and activation energy for the 

endothermic reactions [5].  Herr et al; demonstrated the validity of this approach by 

modeling the thermal degradation of carbon fiber epoxy composite material, using 

known/measured material properties and thermal imagery collected using a FLIR SC6000 
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MWIR camera.  Their model showed the temperature dependence of multiple CFRP 

breakdown mechanisms, which indicates that a reduction in temperature could preserve 

material properties and potentially maintain function in response to tactical laser attacks.   

One approach that has been successful in reducing thermal degradation of composite 

materials, is the introduction of carbon nanotube (CNT) sheets in the reinforcing phase of 

a composite material.  The introduced CNTs achieve this reduction by providing an 

increased conductivity that diffuses the heat load into a larger amount of the material.   

The diffusion of this heat load resulted in smaller amounts of material reaching peak 

temperatures that exceeded thresholds for several degradation mechanisms, resulting in 

strength preservation and reduction in mass loss due to ablation [7-10]. 

Carbon Nanotubes 

 Due to the electron configuration of carbon, it can form a diverse variety of bond 

geometries resulting in many structural isomers, geometric isomers, and enantiomers.  

These properties also result in three solid phase allotropes: diamond, graphite, and 

buckminsterfullerene.  In these allotropes and other molecules, covalent bonds are 

formed by the promotion of 2s electrons to 2p orbitals.  This can occur in three different 

ways, one of which results in three 𝒔𝒔𝒑𝒑𝟐𝟐 orbitals that are on the same plane separated by 

an angle of 120 degrees [11].  It was this orbital structure that Iijima observed in 1991 

when investigating helical microtubes of graphitic carbon [12].  Iijima was the first to 

recognize that these graphene sheets had a large potential number of helicities and 
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chiralities, and that carbon nanotubes can come in the form of single walled carbon 

nanotubes and multi-walled carbon nanotubes as shown in Figure 1 [13-15]. 

 

 

Figure 1. Single Walled Carbon Nanotube and Multi Walled Carbon Nanotube [13-
15] 

 

Since their discovery, carbon nanotubes have displayed impressive properties that 

motivate scientists and engineers to apply them in various applications.  Carbon 

nanotubes have demonstrated tensile strength two orders of magnitude above steel, a 

melting point of 4000 K in ideal vacuum, variable electrical conductivity properties 

depending on atomic structure, and have some of the highest known thermal conductivity 

[16, 17].  However, despite achieving these properties for individual nanotubes, scientists 
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and engineers have thus far failed to realize them in bulk materials such as yarns and 

sheets [15]. 

Problem Statement 

Although bulk materials have failed to replicate the individual properties of 

carbon nanotubes, bulk CNT materials have shown promise in improving the thermal 

resistance of traditional carbon fiber composite materials [7-10]. However, the literature 

has little information on laser induced thermal degradation of carbon fiber – carbon 

nanotube hybrid laminates, so this work will investigate the thermal degradation of these 

materials to determine the best arrangements of carbon fiber – carbon nanotube laminates 

to provide superior thermal protection layers for use in directed energy defense 

applications.   

Research Questions 

To determine best arrangements, various stages of testing will be conducted on 

carbon fiber, carbon nanotube, and hybrid laminates to determine their individual 

material properties as well to identify any differing degradation mechanisms.  

The first objective of this research is to characterize the thermal response of 

carbon fiber reinforced polymer panels, so that adequate comparisons may be made 

between the carbon fiber and hybrid samples.  Additionally, various fiber orientations 

will be explored to determine the effect of fiber orientation on heat conduction in the 

material and subsequent thermal degradation.   

The second objective of this research will be to characterize the thermal response 

of CNT sheets, so that differing behavior between pure CNT samples and hybrid samples 
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may be explained using a combination of the determined carbon fiber and carbon 

nanotube thermal properties.  Additionally, this will allow for the observation of any 

differing degradation mechanisms between CNT and carbon fiber break down, which 

should indicate which material would be a favorable top layer.       

The third objective of this research is to demonstrate whether these hybrid 

laminates provide a benefit, and if so, what the optimal arrangements are.  A summary of 

these objectives is shown below in Table 1. 

 

Table 1. Summary of Research Objectives and Methodology 

Research Objectives  Methodology 
O1: Characterize Carbon Fiber Thermal 
Response 

Expose samples to various irradiances 
and record thermal response  

O2: Characterize Carbon Nanotube Thermal 
Response 

Expose samples to various irradiances 
and record thermal response  

O3: Characterize Hybrid Samples Thermal 
Response 

Expose samples to various irradiances 
and record thermal response  

 

Limitations 

Air Force Research Laboratory Materials and Manufacturing Directorate 

(AFRL/RX) provided unused test samples that were manufactured for the 

characterization of mechanical and vibrational dampening properties [15].  For this 

reason, ideal control samples were not available.  Additionally, test layups were not 

designed with the goal of investigating the effects of a single side asymmetric layups, or 

alternating layers.  Conclusions based on these samples provided insight into how the 

materials degrade, and potentially more optimal layups are postulated.  In addition to this, 
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testing was done in a lab environment that did not support the high velocity and/or 

turbulent conditions that aircraft may experience.  The airflow in these conditions may 

have the effect of carrying organic volatile byproducts away from the laser spot; resulting 

in a delay or prevention of self-ignited combustion contributing to the heating process.   

Additionally, the increased airflow would increase convective cooling, and potentially 

cause more stress on the surface of the material. 

Preview 

 Future tactical laser weapons systems will likely target CFRP materials in aircraft.  

The addition of carbon nanotube sheets to CFRPs has been shown to increase the thermal 

resistance of composite materials due to their distinct thermal properties [7-10].   This 

research will help determine how differing arrangements of carbon fiber and carbon 

nanotube layers affect the thermal resistance of the material.  Chapter II reviews the 

target materials, laser composite material interaction, heat diffusion and degradation of 

the materials, and the fundamentals of radiometric temperature measurement techniques.  

Chapter III covers the manufacturing and quality of the materials, the experimental set 

up, and the justification for the test matrix.  Chapter IV discusses the test results and the 

analysis used to make the conclusions outlined in Chapter V.  Chapter V also covers 

recommendations for future work.   
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II. Background 

Chapter Overview 

This section provides a background understanding of the production and 

properties of cyanate ester resin, carbon fibers, and carbon nanotubes.  In addition, this 

chapter will cover the radiometric concepts used to measure the temperature of the 

samples and the irradiance profile of the beam.   

Cyanate Ester Resin 

Cyanate ester resins are a family of thermosetting polymers characterized by their 

reactive cyanate end groups (−𝑂𝑂 − 𝐶𝐶 ≡ 𝑁𝑁) on an aromatic ring; the general structure of 

these monomers can be seen in Figure 2.  In this structure the linkage X and substituent R 

can be varied to impart specific properties to the resin.  This family of thermosetting 

monomers contains two cyanate functional groups and will homopolymerize into a 

polycyanurate under the presence of heat and/or a catalyst [18, 19].   

 

 

Figure 2 General structure of cyanate ester monomers where the linkage X and 
substituent R are chemical structures that vary across the polymer family [18]. 
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To form polymers, the (−𝑂𝑂 − 𝐶𝐶 ≡ 𝑁𝑁) functionality of the monomers is 

cyclotrimerized through a step-growth process.  The resulting polymer structure is a 

network of oxygen-linked triazine rings and bisphenol ethers.  In this process no volatiles 

are produced, allowing for void-free castings that can achieve a good surface finish in 

fiber reinforced composites [19, 20].    

Although the substituent R and linkage X may vary in the monomer structure to 

impart specific properties to the resin, polycyanurates exhibit similar thermal 

decomposition properties with decyclization of the cyanurate rings and major mass loss 

occurring around 450 ℃ [19,20].    The total thermal decomposition process occurs in 

four stages.  At 400-450 ℃ random scission and cross-linking of the hydrocarbon 

backbone occur with no major mass loss. Above 450 ℃ the triazine rings decompose and 

produce a primary solid residue and the production of volatile compounds.  The 

production of this primary residue increases with the aromatic content of the polymer and 

incorporates about two thirds of the nitrogen and oxygen present in the original material.  

This primary residue then decomposes between 500 and 700 ℃ with the elimination of 

alkenes and hydrogen, resulting in a carbonaceous char containing residual oxygen and 

nitrogen.  The amount of char produced is proportional to the glass transition temperature 

and/or carbon bond unsaturation of the monomer [20].  Thermal decomposition during 

gasification may contribute to microcracking and delamination in the composite. This 

potentially can be exacerbated by the vaporization of unreacted catalyst.  The vaporized 

unreacted catalyst struggles to diffuse through the resin network’s tight molecular 

structure resulting in the creation of delaminated voids in the material.  An example of 

this was observed by Chung et al; who postulated the vaporization of unreacted catalyst 
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as the mechanism for delamination in carbon fiber cyanate ester laminate material.  This 

can be seen in Figure 3 [21].   

 

Figure 3. Void created by the vaporization of unreacted catalyst in a cyanate ester 
carbon fiber composite [21]. 

 

Carbon Fiber 

Due to their high specific strength, carbon fibers have been increasing in demand 

for use in aerospace, military and other applications.  Carbon fibers contain greater than 

90% carbon by mass, and they are obtained through pyrolysis of an appropriate precursor 

material.  Two economically viable precursors are acrylic and pitch [22].  Commercially 

90% of carbon fibers have polyacrylonitrile (PAN) precursors due to their superior 

carbon yield and the carbon fibers’ resulting tensile and compressive properties [22-24].   

Due to this, the formation of carbon fibers through the pyrolysis of PAN-based fibers are 

the subject of this review.   

Polymer chains can be formed from a single monomer or a set of comonomers.  

Polymer chains formed from a single repeating monomer unit is called a homopolymer, 

and polymer chains formed from more than one species of monomer (comonomers) are 

called copolymers.   PAN polymer product is produced in several ways; however, the 

most common method of PAN precursor production is aqueous dispersion of acrylonitrile 
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and selected comonomers and polymerization via a free radical mechanism.  

Homopolymer PAN products are not used for the production of carbon fibers due to the 

rapid release of heat.  The rapid release of heat causes chain scissions due to thermal 

shock in the resulting PAN fibers decreasing the modulus of the fiber and subsequently 

the eventual carbon fibers.  Comonomers can hinder this heat release by slowing the 

exothermic reactions resulting in higher quality fibers.  Additionally, comonomers assist 

the stabilization process, improve mobility of the polymer chains, reduce the initiation 

temperature of cyclization, and impart variations on carbon fiber properties.  Common 

comonomers include methyl acrylate, carboxylic acids, acrylamide, and sodium acrylate.  

Of these comonomers, acrylonitrile and methyl acrylate are considered the ideal pair due 

to their similar polarity, resonance, and stearic hinderance [25].   

PAN-based fibers can be produced from these polymer products using a variety of 

spinning materials and processing conditions yielding different carbon fiber material 

properties.  Variable processing conditions include dope concentration (monomer 

concentration in solution), temperature, extrusion rate, coagulation bath temperature, PH, 

washing and stretching bath temperatures, as well as drying temperature [23]. Typically, 

wet spinning techniques are used to produce most PAN-based carbon fiber precursors; 

however, it is slowly being replaced by dry jet wet techniques [24,25].  The resulting 

chemical structure of the PAN fibers can be seen in Figure 4 [22].  
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Figure 4. Chemical structure of PAN-based precursors [22] 

After spinning, the PAN-based fibers undergo a variety of heating and chemical 

processes to yield carbon fibers.  First, the PAN-based fibers are thermally stabilized in 

air by a low temperature heat treatment at around 200-300 ℃ to prevent melting or fusion 

of the fibers in subsequent processes.  In this process, the linear molecules of the PAN-

based fibers are converted to a cyclic structure [22].  This can be seen in Figure 5. 

 

 

Figure 5. Conversion of the linear structure of the PAN-based polymers to a cyclic 
structure [22]. 

 

This process is followed by carbonization, the removal of hydrogen and nitrogen, 

and graphitization, the rearrangement of carbon into graphitic structure, of the fibers in an 

inert atmosphere to yield hexagonal graphitic structures, seen in Figure 6.  This two-step 

process can be achieved with a variety of temperatures ranging from 1500-3000 ℃ 

depending on the eventual purpose of the carbon fibers.  Higher temperatures yield a 

higher degree of carbonization and graphitization, and a subsequently higher elastic 
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modulus.  In temperatures higher than 2000 ℃, argon must be used instead of nitrogen, 

due to the production of cyanogen in carbon nitrogen reactions [22].   

 

 

Figure 6. Resulting graphitic structure after carbonization and graphitization [22]. 

 

At this point, the carbon fibers have formed with the desired mechanical 

properties.  However, they need to undergo surface treatment to improve eventual 

composite bond strength between the fiber-matrix interface of the eventual composites.  

The specifics of these processes are largely proprietary and specific to the purpose of the 

carbon fibers, but common surface treatments consist of liquid or gaseous oxidation of 

the fibers.  This can double composite shear strengths with only a 4-6% reduction in fiber 

tensile strength by improving bond strength between the fiber and the matrix phase [22].  

Fibers produced from this whole process normally have a tensile modulus from 200 to 

350 GPa, strength from 3 to 7 GPa, and thermal conductivity < 14 W/mK [24].  The 

overall process is summarized in Figure 7. 
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Figure 7.  Manufacturing process of carbon fibers from PAN-based precursors [22]. 

 

 The large number of variables in the manufacturing process results in a wide 

range of attainable thermal properties in carbon fibers.  Differing precursor material and 

heat treatment temperatures can change thermal conductivity and heat capacities [26].     

Carbon Nanotubes 

In their simplest description, carbon nanotubes are sheets of graphene rolled into a 

tube.  CNTs were first produced by Iijima using an arc discharge technique in 1991.  

Since then, catalytic chemical vapor deposition (CVD) and laser ablation techniques have 

emerged.   

The arc discharge technique produces CNTs by passing direct current through 

graphite electrodes in close proximity with each other.  This method typically produces 

multi walled carbon nanotubes (MWCNTs), which are made up of multiple concentric 
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single walled nanotubes.  Single walled carbon nanotubes (SWCNTs) can be produced by 

incorporating a metal catalyst on the graphite anode or cathode.   

In the laser ablation technique, a mixture of graphite and metal catalysts in a hot 

furnace is vaporized by a pulsed or continuous wave laser to produce 𝐶𝐶3,𝐶𝐶2, and 𝐶𝐶.  

These low weight molecular species condense and form SWCNTs with the help of the 

metal catalyst vapors. There have been no reports of the production of MWCNTs using 

this technique.  Unlike the arc discharge technique, the laser ablation technique would 

produce no CNTs without the presence of metal catalysts [27].    

The bulk CNT material used in this work was produced using catalytic CVD 

methods.  The general strategy to produce CNTs using CVD methods is to flow 

hydrocarbon gases, commonly ethylene or acetylene, with an inert gas in a tube reactor at 

approximately 550 to 750 ℃.  At these temperatures, the hydrocarbons decompose and 

deposit carbon on catalyst material supported by alumina [27].   

The most common catalyst materials used for CVD are iron, cobalt, and nickel.  

The carbon precipitates into carbon nanotubes due to its low solubility in these metals.  In 

this scheme, carbon nanotubes can grow in a tip growth mode, where carbon nanotubes 

grow from an iron particle down, or a base growth mode, where carbon nanotubes grow 

from an iron particle up.  In this method carbon nanotubes form over other allotropic 

materials because it requires the lowest amount of energy [27].   

 This technique has two variations that have made significant progress: fixed bed 

& fluidized bed.  In the fixed bed method SWCNT or MWCNT production can be 

controlled by using different substrates.  Additionally, substrate/CNT interaction governs 

the alignment and type of CNT production.  In the fluidized bed method, there is a large 
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available surface area for CNT growth and great temperature uniformity.  Due to this, 

industry has mostly been using the fluidized bed technique for large scale production 

[27].  

Produced carbon nanotubes can have a variety of chiralities that modify atomic 

structures and impart unique properties to individual carbon nanotubes [17].  The 

different atomic structures can be described by the chiral vector and the chiral angle 

defined as  

 

 𝐶𝐶ℎ = 𝑛𝑛�⃗�𝑎1 + 𝑚𝑚�⃗�𝑎2 (1) 

 
𝜃𝜃 =

𝑚𝑚√3
2𝑛𝑛 + 𝑚𝑚

 
(2) 

 

where n and m are integers and �⃗�𝑎1 and �⃗�𝑎2 are unit vectors 2.46 angstroms in length.  The 

variable chiralities are depicted in Figure 8.    

 

 

Figure 8.  Diagram of graphene sheet depicting the chiral vector and chiral angle, as 
well as the resulting cases for the minimum and maximum chiral angle [28].  The 

dotted line indicates the edge of the roll. 
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The unique roll of the CNT tube is described by the chiral index (n, m).  The three 

general configurations of the atomic structure are armchair, zigzag, and chiral (seen in 

Figure 9) corresponding to chiral indices of (n, n), (n,0), (n, m) respectively [27].   

 

Figure 9.  CNT structures corresponding to chiral vectors (n, n), (n,0), (n, m) 
respectively [ 29]. 

 

 Depending on an individual SWCNT’s chiral index (n,m),  it can be classified as 

either a metallic or semi-conducing material.  If the difference in n and m is a multiple of 

three then the carbon nanotube is classified as metallic, otherwise it is semi-conducting.  

Due to the multiple layers and individual chiralities in MWCNTs, SWCNTs have more 

distinctive electrical and optical properties [27].     

 Theoretically, individual SWCNTs can have an anisotropic thermal conductivity 

in the tube direction of 𝑘𝑘 = 6000 𝑊𝑊/𝑚𝑚 𝐾𝐾 making them appealing for heat management 
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applications.  Unfortunately, large assemblies of carbon nanotubes have to be assembled 

to achieve the desired heat flow.  In these large assemblies, bulk CNT materials exhibit 

thermal conductivities on the order of 50 𝑊𝑊/𝑚𝑚 𝐾𝐾.  This reduction in thermal conductivity 

is due to phonon mode suppression within MWCNTs and sheet imperfections such as 

nanotube interconnections (conduction from one tube to another) and nanotube 

misalignment [31].  

Laser Composite Material Interaction  

 Heating of composite materials exposed to laser radiation is largely determined by 

the scattering and absorption mechanisms of the individual composite components.  Bulk 

optical properties are determined by a combination of the absorption, reflectance and 

transmittance of the individual materials and the structure of the composite material.   

 Epoxy in carbon fiber/epoxy composites is largely transparent to near IR so laser 

light incident on the surface is either diffusively or specularly reflected, transmitted and 

scattered to deeper fibers, or absorbed.  The primary absorbers in these composite 

materials are the carbon fibers, with an absorptivity of 0.78 for normal incidence.  The 

absorptivity of these carbon fibers is further enhanced due to the effect of multiple inter-

material scatterings that give transmitted light more opportunities to be absorbed by 

adjacent carbon fibers [32].  This behavior is depicted in Figure 10.   
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Figure 10.  Ray propagation through composite material.  The horizontal lines 
represent scattered light from the epoxy surface, while dotted lines represent light 

scattered out of the material [32]. 
 

The result is an overall material absorptivity that is greater than either the carbon 

fiber or epoxy absorptivity, which for carbon fiber/epoxy composites has been measured 

at 0.93 at a wavelength of 1.3𝜇𝜇𝑚𝑚.  Additionally, the scattering of light off of the carbon 

fibers to neighboring carbon fibers causes almost complete absorption in the first few 

fiber layers and an intense amount of energy concentration at the surface contributing to a 

steep temperature gradient in the material [32].  

It is for similar reasons that CNT sheets, also known as “buckypapers”, have large 

absorptivities, and vertically aligned SWCNT forests have demonstrated some of the 

highest and spectrally wide absorptivities ever measured [33].  A plot comparing the 

different emissivity of bulk carbon nanotube structures can be seen in Figure 11.  By 

Kirchhoff’s law, which states that an object’s emitted radiation must equal its absorbed 

radiation at thermal equilibrium, Figure 11 shows the approximate absorptivity of the 

material.  For this reason, it is expected that samples with carbon nanotube sheet top 

layers will absorb similarly, but not identically to the carbon fiber controls.   
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Figure 11. Emissivity of various CNT structures [33]. 

Theoretical Description of Thermal Degradation 

As laser irradiation is absorbed by carbon fibers and conducted to the surrounding 

polymer matrix, it initiates rapid heating, potentially causing degradation of the material. 

This thermal response is similar to the thermal response of CFRP materials exposed to 

fire.  The heat introduced in both cases decomposes polymer and fiber materials 

producing volatile gases, solid carbonaceous char, and smoke.  The main difference 

between laser irradiated decomposition and fire induced decomposition is that laser 

irradiated heating does not ignite organic volatiles until sufficient surface temperatures of 

1150 ℃ are reached [5].  Due to this similarity many models for the decomposition of 

CFRP materials in a fire may be applied to laser irradiated heating with the subtraction or 

delay of any exothermic terms that model the combustion and heat contributions of the 

organic volatiles [5, 34].    
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To aid understanding of the resulting theoretical model, the terms will be introduced 

according to the chronology of the thermal decomposition of carbon fiber reinforced 

polymers.  Under the presence of a one-sided heat flux, heat is initially conducted 

through the material described by the diffusion equation     

 

 
𝜌𝜌𝐶𝐶𝑝𝑝

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑘𝑘𝑥𝑥
𝜕𝜕2𝜕𝜕
𝜕𝜕2𝑥𝑥

+ 𝑘𝑘𝑦𝑦
𝜕𝜕2𝜕𝜕
𝜕𝜕2𝑦𝑦

+  𝑘𝑘𝑧𝑧
𝜕𝜕2𝜕𝜕
𝜕𝜕2𝑧𝑧

     
(3) 

 

where 𝜌𝜌 is density, 𝐶𝐶𝑝𝑝 is heat capacity, and 𝑘𝑘 is thermal conductivity of the material with 

boundary conditions 

  
𝑘𝑘

𝜕𝜕𝜕𝜕
𝑥𝑥, 𝑦𝑦, 𝑧𝑧

=  − ℎ(𝜕𝜕 − 𝜕𝜕∞) − 𝜖𝜖�̅�𝜎(𝜕𝜕4 − 𝜕𝜕∞4) + 𝛼𝛼(𝜆𝜆)𝐿𝐿 (4) 

 

where 𝑘𝑘 is thermal conductivity, ℎ is the convection coefficient, 𝜖𝜖 ̅is the average 

emissivity, 𝜎𝜎 is Stefan-Boltzmann’s constant, 𝛼𝛼(𝜆𝜆) is the absorptivity of the material at 

the laser wavelength 𝜆𝜆, and 𝐿𝐿 is the laser irradiation. 𝜕𝜕 is the surface temperature of the 

composite, and 𝜕𝜕∞  is the ambient temperature of the environment.  In this work, 𝑘𝑘𝑥𝑥 and 

𝑘𝑘𝑦𝑦 will be considered in-plane thermal conductivities, and 𝑘𝑘𝑧𝑧 will be considered through 

plane or though thickness conductivity.  The bulk composite thermal properties depend 

on both the thermal conductivity of the carbon fibers and the resin matrix.  In carbon 

fibers the thermal conductivity can vary from 20-80 W/mK, while in resins it can vary 

from 0.10 to 0.25 W/mK.  Due to this, heat absorbed in the fibers is quickly conducted in 

the fiber direction, while slowly conducted through the polymer matrix to the adjacent 
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fibers, resulting in steep temperature gradients.  This can be complex to model, because 

𝑘𝑘,𝐶𝐶𝑝𝑝, 𝜖𝜖 ,̅𝛼𝛼(𝜆𝜆) change with temperature, decomposition, and sometimes wavelength.  

These changes require the individuality of the material properties at different points in the 

material will have to be accounted for [34].   

   As the CFRP material heats up to 100-150 ℃, moisture in the resin matrix 

begins to vaporize creating dehydrated regions in the resin.  Further heating to 400-450 

℃, in cyanate esters, initiates random scission and cross linking of the hydrocarbon 

backbone of the polymer with no major mass loss.  Above 450 ℃ the triazine rings break 

down producing primary solid residue and volatiles [19,20].  This production of gaseous 

material struggles to permeate through the polymer matrix which can result in high 

internal gas pressures, measured up to ~10 atm in laminates, which can produce pores, 

delaminations and matrix cracks [34].  These decomposition processes are endothermic 

and have a cooling effect on sample.  The release of heated gases also marginally cools 

the sample by carrying away heat from the sample.  This is largely determined by the 

heat capacity of the individual molecules, the mass flow rate, and the amount of 

vaporized, escaping material. 

The cooling effect of these processes will depend on the heat of the reaction, 

reaction rates, and the amount of reactants in the composite material.  The reaction rates 

for these reactions can be modeled using an Arrhenius kinetic rate equation 

 

 
 

𝜕𝜕𝑚𝑚
𝜕𝜕𝜕𝜕

=  −𝐴𝐴𝑖𝑖𝑚𝑚𝑜𝑜 �
𝑚𝑚 −𝑚𝑚𝑓𝑓

𝑚𝑚𝑜𝑜
�
𝑛𝑛𝑖𝑖
𝜖𝜖−𝐸𝐸𝑎𝑎/𝑅𝑅𝑅𝑅 (5) 
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which models the reaction rate as a function of the unreacted population above the 

activation energy.  In the equation above, 𝐴𝐴𝑖𝑖,  𝐸𝐸𝑎𝑎, and 𝑛𝑛𝑖𝑖 are the pre-exponential factor, 

activation energy, and order of the reaction respectively.  The variables 𝑚𝑚𝑜𝑜 ,𝑚𝑚𝑓𝑓 , and 𝑚𝑚 

are the initial, final and instantaneous mass of the reactant material.      

 By modeling the reaction rates, the heat equation can be modified with the 

addition of multiple Arrhenius decomposition terms depending on the individual polymer 

breakdown process, and the heat loss due to the convective flow of vaporized hot gases.     

 

 
𝜌𝜌𝐶𝐶𝑝𝑝

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑘𝑘𝑥𝑥
𝜕𝜕2𝜕𝜕
𝜕𝜕2𝑥𝑥

+ 𝑘𝑘𝑦𝑦
𝜕𝜕2𝜕𝜕
𝜕𝜕2𝑦𝑦

+  𝑘𝑘𝑧𝑧
𝜕𝜕2𝜕𝜕
𝜕𝜕2𝑧𝑧

+ Σ
𝑄𝑄𝑟𝑟𝑥𝑥𝑛𝑛
𝑉𝑉

𝜖𝜖𝑚𝑚𝑟𝑟𝑥𝑥𝑛𝑛

𝜖𝜖𝜕𝜕
+
𝐶𝐶𝑝𝑝,𝑔𝑔𝑎𝑎𝑔𝑔𝜕𝜕𝜕𝜕

𝑉𝑉
𝜖𝜖𝑚𝑚𝑓𝑓

𝜖𝜖𝜕𝜕
 

(6) 

 

In this equation, the endothermic reactions are accounted for by the heat of the 

decomposition reaction term 𝑄𝑄𝑟𝑟𝑥𝑥𝑛𝑛 multiplied by the reaction rate 𝜖𝜖𝑚𝑚𝑟𝑟𝑥𝑥𝑛𝑛/𝜖𝜖𝜕𝜕.  

Additionally, the flow of hot vaporized moisture and organic volatiles is modeled by the 

last term. 

 The fibers are more thermally stable than the polymers in this process but they 

can oxidize under the presence of enough heat and atmosphere.  Typically, fibers undergo 

a small initial mass loss in air or nitrogen over the temperature range 300-500 ℃ due to 

the decomposition of the organic sizing compound on the carbon fibers.  At higher 

temperatures, 500-950 ℃, much larger mass loss occurs in the fibers due to oxidation.  

The oxidation of carbon fibers in composite materials is limited to the surface due to the 

production of organic volatile gases in the decomposing resin.  The produced gases 

typically diffuse out of the material preventing the flow of oxygen into the composite.  
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This mass loss also depends on fiber diameter when heated in air.  The oxidation reaction 

of the fibers can be accounted for with an additional Arrhenius reaction term in the heat 

equation [35].  Similar to the carbon fibers, carbon nanotubes initially thermally oxidize 

at 520 ℃ with a maximum mass loss at 650 ℃ [36].   

Radiometric Temperature Measurement  

Every object in nature is an absorber and emitter of radiation.  When an object 

thermally emits at the theoretical max, it is called a blackbody and has an emissivity 

𝜖𝜖(𝜆𝜆,𝜕𝜕) = 1 at all wavelengths and temperatures.  Perfect emitters do not exist, but very 

close approximations can be made by creating a small aperture in the wall of an 

isothermal enclosure.  If the enclosure is large (dimensions ≫ wavelengths), then the 

emitted radiance from the small aperture will not depend on the geometry of the 

enclosure and will obey the relation: 

 

 
𝐿𝐿𝜆𝜆(𝜆𝜆,𝜕𝜕) =

2ℎ𝑐𝑐2

𝜆𝜆5
1

𝜖𝜖
ℎ𝑐𝑐
𝜆𝜆𝜆𝜆𝑅𝑅 − 1

    (
𝑊𝑊

𝑐𝑐𝑚𝑚2 Ω 𝜇𝜇𝑚𝑚
) 

(7) 

 

where ℎ is Planck’s constant, 𝑐𝑐 is the speed of light, 𝜆𝜆 is the wavelength, 𝑘𝑘 is 

Boltzmann’s constant, and 𝜕𝜕 is temperature. Cavities can achieve this approximation 

because any light externally incident on the cavity is either reflected and trapped in the 

cavity (if the aperture is small) or absorbed and reradiated by it.  In this sense, a small 

aperture to a large isothermal enclosure is a perfect absorber because it does not allow 

externally incident light to escape, resulting in blackbody radiative behavior.  This is the 
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fundamental upper limit for thermal radiation that no object can supersede.  Due to this, 

the description of how well objects emit radiation is defined by the ratio between the 

source exitance and blackbody exitance.        

 

  
𝜖𝜖(𝜆𝜆,𝜕𝜕) ≡

𝑀𝑀𝜆𝜆(𝜆𝜆,𝜕𝜕)|𝑔𝑔𝑜𝑜𝑠𝑠𝑟𝑟𝑐𝑐𝑠𝑠
𝑀𝑀𝜆𝜆(𝜆𝜆,𝜕𝜕)|𝑏𝑏𝑏𝑏𝑎𝑎𝑐𝑐𝜆𝜆𝑏𝑏𝑜𝑜𝑏𝑏𝑦𝑦

   
(8) 

 

With the emissivity defined as the ratio between the source exitance and the exitance of a 

true blackbody, the thermally emitted radiance of non-blackbodies can be described by 

the equation  

 

 
𝐿𝐿𝜆𝜆,𝑂𝑂𝑏𝑏𝑂𝑂𝑠𝑠𝑐𝑐𝑂𝑂 =  𝜖𝜖(𝜆𝜆,𝜕𝜕) ∗ 𝐿𝐿𝜆𝜆(𝜆𝜆,𝜕𝜕) = 𝜖𝜖(𝜆𝜆,𝜕𝜕) ∗

2ℎ𝑐𝑐2

𝜆𝜆5
1

𝜖𝜖ℎ𝑐𝑐/𝜆𝜆𝜆𝜆𝑅𝑅 − 1
 

(9) 

 

where the source radiance is just the blackbody radiance times the source emissivity.  

This does not account for all of the radiance emitted from an objects surface.  The total 

radiance in the case that ϵ <1 also contains the reflected radiance from the ambient 

environment.  In cases where this radiance is small this term may be ignored.  By using 

this relationship, thermal cameras can be calibrated to measure the temperature of objects 

based purely on their emitted radiation.  This is achieved by observing approximate 

blackbodies with emissivities very close to 1 at a variety of temperatures.  The calculated 

radiance of these blackbodies at landmark temperatures is then correlated to the measured 

response of the detector to build a relationship between detector response and radiance 

and by extension, temperature.  Once this correlation has been established, temperature 
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can be obtained by using the measured radiance, the observation wavelength, and 

inverting Planck’s equation to solve for temperature.  It is important to note that by using 

spectral bandpass filters the observed wavelength can be constrained and the emissivity 

can be approximated as a constant.  Additionally, filters will reduce the amount of 

reflected radiance that will be incident on the detector.  In the case of hot (𝜕𝜕 > 𝜕𝜕∞) 

objects strongly emitting in the observation range, the reflected irradiance will be small 

compared to thermally emitted irradiance and can be neglected. 

   

 𝜕𝜕(𝜆𝜆, 𝐿𝐿𝑂𝑂𝑏𝑏𝑂𝑂𝑠𝑠𝑐𝑐𝑂𝑂) = ℎ𝑐𝑐

𝜆𝜆𝜆𝜆 ln(�
𝐿𝐿𝜆𝜆,𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂∗𝜆𝜆5

2hc2∗ϵ(λ,T)   �
−1

+1)   
  (10) 

 

Alternatively, polynomial fit functions that fit radiance to temperature within the dynamic 

range of the detector may be used to map measured radiance to temperature [37].   

Recording temperature measurements through this technique easily allows for the 

high spatial and temporal resolutions from thermal imagery.  Unfortunately, the range of 

observable temperatures is limited by the dynamic range of the detector.  To circumvent 

this a technique called super framing may be used.    Super framing allows an extension 

of dynamic range at the cost of temporal resolution, by collecting thermal imagery using 

multiple sequential integration times.  This sacrifices temporal resolution to gain a 

dynamic range less than or equal to the sum of the ranges of the individual integration 

times.  This allows dynamic ranges of greater than 1000 ℃ to be achieved.   

The limitation of radiometric temperature measurement is that the accuracy of the 

temperature measurement will largely depend on the accuracy of the measured emissivity 
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values which can have high spectral dependency that evolves with temperature.  Spectral 

band pass filters can mitigate this complexity, because spectral bandpass filters only 

transmit observed radiation at a particular wavelength range allowing users to use 

emissivity measured values for a “single” wavelength.  This provides less complexity in 

the emissivity correction at the cost of reduced signal.  This can be offset by increasing 

integration times and subsequently reducing maximal frame rates.     

Unfortunately, this does not address the temperature dependency.  In situations where 

the emissivity is constant with respect to true temperature, then the correction may be 

applied and the resulting output is an accurate estimate of the true temperature.  In 

thermally dynamic processes that modify the emissivity, the process is not as simple.  As 

composite materials heat up decomposition occurs drastically changing the emissivity of 

the material.  In cyanate ester resins, material decomposition begins approximately at 

450℃.  Once the resin is decomposed bare char remains contributing to the evolved 

emissivity.  At higher temperatures the char oxidizes leaving bare carbon fiber further 

changing the emissivity [5].  Due to this codependence between emissivity and 

temperature, one emissivity correction to the observed radiometric temperature is 

insufficient to accurately capture the true temperature.  When the first emissivity 

correction is applied, it yields a better estimate for the true temperature, which also yields 

a more accurate emissivity estimate for the material.  To account for this, a new 

correction is applied with the better emissivity estimate.  As better temperature and 

emissivity estimates are obtained, the solution converges to an accurate representation of 

the true temperature.   
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Radiometric Techniques Measuring Beam Irradiance 

 Due to the high irradiances that are characteristic of laser sources, direct imaging 

of the beam often saturates or damages focal plane array detectors.  To circumvent this 

issue, imaging of the reflectance off a Lambertian surface may be performed.  The 

bidirectional reflectance function (BRDF) describes the reflected radiance of a surface 

irradiated by a source.  The BRDF function of a Lambertian surface is a constant, which 

means that the surface is has no specular reflection, and is a uniform diffusive reflector.   

An illustration of this can be seen in Figure 12.   

 
𝑓𝑓(𝜃𝜃𝑖𝑖 ,𝜙𝜙𝑖𝑖 ,𝜃𝜃𝑟𝑟 ,𝜙𝜙𝑟𝑟) =

𝐿𝐿(𝜃𝜃𝑟𝑟 ,𝜙𝜙𝑟𝑟)
𝐸𝐸(𝜃𝜃𝑖𝑖 ,𝜙𝜙𝑖𝑖)

= 𝛼𝛼 

 

(11) 

 

 

Figure 12.  Diffusive reflection off of a Lambertian surface. 

Due to this behavior, the reflected radiance in any viewing angle is proportional to the 

exitance incident on the Lambertian surface.   

 

 𝐿𝐿𝑟𝑟𝑠𝑠𝑓𝑓𝑏𝑏𝑠𝑠𝑐𝑐𝑂𝑂𝑠𝑠𝑏𝑏 ∝   𝐸𝐸𝑖𝑖𝑛𝑛𝑐𝑐(𝜃𝜃,𝜙𝜙) (12) 
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As a result, irradiance measured by focal plane array of a camera observing the reflection 

will be proportional to the irradiance of the beam, excluding aberrations due to 

atmospheric transmission and optics.  This yields a relative irradiance profile that is 

proportional to the beam profile.  By using a calibration target and power measurements, 

the relative irradiance profile can be spatially adjusted and scaled with power to get the 

irradiance profile of the actual beam [38,39].    

Summary 

Absorption of laser radiation in carbon fiber-carbon nanotube composite materials 

is largely due to the constituent material properties and composite geometry.  As heating 

occurs, the polymer goes through a series of degradation processes that ultimately result 

in depolymerization and charred material.  Additionally, carbon fibers oxidize at 500-950 

℃,but this is largely confined to the surface due to the production of organic volatiles.  

These processes can be monitored using radiometric temperature techniques and modeled 

using a heat equation modified with convective heat flow and endothermic Arrhenius 

reactions.  Additionally, the irradiance profile can be captured by imaging the laser light 

scattered from a Lambertian surface.   
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III. Methodology 

Chapter Overview 

The purpose of this chapter is to detail the manufacturing processes used to 

produce the investigated composite materials, and the irradiation procedures and 

measurement techniques used to initiate and study the thermal decomposition of the 

laminate materials.  The composite materials were prepared by AFRL/RX and a material 

quality analysis was done by 1Lt James O’Keefe.   

Test Subjects 

The composite materials were manufactured using carbon fibers, carbon 

nanotubes, and cyanate ester resin.  The carbon fibers are polyacrylonitrile (PAN) based 

HexTow HM-63 carbon fibers manufactured by Hexcel Corporation of Stamford, 

Connecticut, USA.  These carbon fibers have undergone additional surface treatment and 

the application of sizing to improve interlaminar shear strength and handling 

characteristics.  The resulting fibers were combined in tows of thousands of individual 

fibers and impregnated with PMT-F6 cyanate ester resin by Patz Materials and 

Technologies, Benicia California, USA to form unidirectional prepreg tape.  The carbon 

nanotubes were produced by Nanocomp Technologies of Concord, New Hampshire, 

USA in the form of a non-woven sheet material.  The sheet material was produced by 

chemical vapor deposition and is composed of bundled carbon nanotubes hundreds of 

microns thick and millimeters long.  These sheets were then treated using Patz Material 

resins system to create homogenous directional flow of CNTs within the sheet.  The 
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matrix phase of these composites was a toughened cyanate ester resin PMT-F6 produced 

by Patz Materials and Technologies [15].  

 The laminates were constructed using standard layup techniques by 1Lt James 

O’Keefe and 1Lt Casey Keilbarth.  To build the laminates used in the experiment, the 

required laminate material was cut from the CF prepreg tape and the CNT sheets.  To 

build the test laminates, these plies were then individually stacked together, using a 

technique called booking, in groups of four on a 20-psi vacuum table for 15 mins.  The 

resulting groups were then booked together to achieve the laminate layups outlined in 

Table 2.  The carbon fiber laminates were composed of 20 plies of unidirectional carbon 

fiber in the 0, 90, and 45-degree orientation.  The carbon nanotube laminates were 

composed of 20 plies of homogenous flow CNTs in the 0, 90, and 45-degree orientation.  

The hybrid samples had a control sample, and three sub groups.  The control sample for 

the set of hybrid samples contained eight carbon fiber plies in alternating 0-degree and 

90-degree orientations.  The subgroups contained the same carbon fiber plies, with the 

addition of various CNT layers.  In the first subgroup (sample 3.2-3.4), CNT layers were 

added to the center.  In the second subgroup (sample 3.5-3.8), CNT layers were added to 

the edges and the center in various amounts.  In the final subgroup (sample 3.9-3.12), 

three CNT layers were added to the surface with varying amounts of CNT layers added in 

the center.  The results of these subgroups are similar and grouped in this manner in 

subsequent sections. All booked laminates were then frozen to prevent resin degradation 

[15].   
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Table 2 Test Samples and Orientation.  In the hybrid samples (3.1-3.12), the carbon 
fiber layers are in alternating 0,90-degree orientations, and the CNTs are in the 0 

orientation [15]. 

Test #  Orientation 
1.1 [0CF ]20 
1.3  [90CF ]20 
1.5  [45CF ]20 
2.1  [0CNT ]20 
2.2  [90CNT ]20 
2.3  [45CNT ]20 
3.1  [0; 90]4S 
3.2  [0,90,0,90,CNT,90,0,90,0] 
3.3 [0,90,0,90,CNT,CNT,90,0,90,0] 
3.4 [0,90,0,90,CNT,CNT,CNT,90,0,90,0] 
3.5 [CNT,0,90,0,90,CNT,90,0,90,0,CNT] 
3.6 [CNT,0,90,0,90,CNT,CNT,90,0,90,0,CNT] 
3.7 [CNT,CNT,0,90,0,90,CNT,90,0,90,0,CNT,CNT] 
3.8 [CNT,CNT,0,90,0,90,CNT,CNT,90,0,90,0,CNT,CNT] 
3.9 [CNT,CNT,CNT,0,90,0,90,90,0,90,0,CNT,CNT,CNT] 
3.10 [CNT,CNT,CNT,0,90,0,90,CNT,90,0,90,0,CNT,CNT,CNT] 
3.11 [CNT,CNT,CNT,0,90,0,90,CNT,CNT,90,0,90,0,CNT,CNT,CNT] 
3.12 [CNT,CNT,CNT,0,90,0,90,CNT,CNT,CNT,90,0,90,0,CNT,CNT,CNT] 

 

Once all of the panels were assembled, they were thawed for layup and curing.  

The layup sequence from bottom-to-top on the mold surface was:  release film (Kapton 

sheet), non-porous Teflon, laminate, porous Teflon, non-porous Teflon, bleeder cloth 

(x2), and vacuum bagging as shown in Figure 13.   Additionally, edge dams were used to 

prevent excessive resin bleeding [15].   

 

 

Figure 13. Stacking sequence of materials for autoclave processing [15]. 
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The assembly was then vacuum-bagged under full vacuum to expel air at 26 psi.  Leak 

checks showed that the bag leaked less than 0.5 psi/min.  All composites were then cured 

by an autoclave using the PMT-F6 curing procedures by the manufacturer.  The 

procedure was: ramp up 5 ℉ /min to 220 ℉ under vacuum bag pressure, dwell 220 ℉ for 

30 mins at 80 psi autoclave pressure, ramp 5 ℉/min to 350 ℉, maintain 350 ℉ for 4 

hours, ramp down 5 ℉/min to room temperature and remove pressure. An overview of 

this process can be seen in Figure 14.  To ensure laminate quality, four thermocouples 

were placed in the laminate layers to provide autoclave feedback during the cure cycle 

[15]. 

 

 
Figure 14. The temperature ramps and settings used to cure the PMT-F6 cyanate 

ester resin in the laminate material [15]. 
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 After curing was complete an ultrasonic C-scan was performed by AFRL/RX on a 

Wesdyne system to determine if there were any areas of delamination, matrix or fiber 

cracking, and resin rich or resin starved areas.  An example of the results can be seen 

below in Figure 15.  The uniform color in Figure 15 indicates that no delamination or 

matrix cracking occurred test sample 3.3.  Similar scans indicated that the other test 

samples were also free of delamination and matrix or fiber cracking [15].   

 

 

Figure 15. Ultrasonic C-scan of test sample 3.2.  The image uniformity indicates no 
delamination or matrix cracking [15]. 
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 Once quality was assured, the AFIT Model shop cut the test samples according to 

the dimensions shown in Figure 16, resulting in the sample dimensions outlined in Table 

3.  The samples’ volumetric dimensions were determined using a caliper gauge with a 

resolution of 0.01 𝑚𝑚𝑚𝑚.  Sample dimensions were measured in three locations on each 

sample and then averaged to get the final result.  The mass of the samples was measured 

three times and averaged with a Voyager Pro scale with a resolution of 0.0001 𝑔𝑔.  The 

lengths of the samples are not reported at this point because the samples were further cut 

using a diamond tipped hacksaw in preparation for laser irradiation testing.  The lengths 

of individual samples varied and will be reported with the report of the individual test 

results [15].   

 

 

Figure 16. Individual Test Specimens cut from a single laminate [15]. 
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Table 3. Summary of material dimensions and densities [15]. 

Test #  Avg Thickness (𝒄𝒄𝒄𝒄) Avg Width (𝒄𝒄𝒄𝒄) Volumetric Density (g / 𝒄𝒄𝒄𝒄𝟑𝟑) 
1.1 0.224±0.002 2.539±0.001 1.535±0.013 
1.3  0.235±0.001 2.537±0.002 1.544±0.010 
1.5  0.235±0.005 2.537±0.002 1.537±0.024 
2.1  0.066±0.004 2.531±0.001 1.349±0.034 
2.2  0.064±0.004 2.532±0.002 1.347±0.050 
2.3  0.067±0.002 2.534±0.002 1.370±0.021 
3.1  0.094±0.002 2.534±0.002 1.518±0.015 
3.2  0.101±0.005 2.534±0.002 1.492±0.058 
3.3 0.105±0.000 2.536±0.004 1.498±0.013 
3.4 0.105±0.001 2.536±0.003 1.500±0.021 
3.5 0.108±0.001 2.532±0.002 1.484±0.006 
3.6 0.112±0.001 2.534±0.002 1.466±0.024 
3.7 0.115±0.001 2.534±0.002 1.469±0.018 
3.8 0.117±0.002 2.534±0.003 1.469±0.023 
3.9 0.119±0.002 2.533±0.002 1.450±0.018 
3.10 0.120±0.003 2.532±0.002 1.478±0.018 
3.11 0.123±0.002 2.534±0.004 1.487±0.030 
3.12 0.125±0.002 2.535±0.000 1.483±0.022 

 

Additional to the ultrasonic C-scan, the machined samples underwent an X-ray 

CT scan on a XT-H-225-ST Microfocus X-ray system to determine the porosity of the 

laminates.  If porosity pockets existed in the material, then black dots would appear in the 

image.  A representative of the results can be seen in Figure 17, demonstrating the lack of 

porosity in test sample 2.1.  Similar results were found for the other samples [15].   
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Figure 17. X-ray CT scan of test sample 2.1.  The lack of black dots indicates the 
lack of porosity in the material [15]. 

 

Beam Images and Power Measurements 

The laser samples were irradiated with (23) 30 W (max power) Shark laser diodes 

that were fiber coupled into an array that directed the beams to the target samples.  The 

set up used can be seen below in Figure 18.  To characterize the irradiance profile for 

modeling of the experiment in future work, power and beam profile measurements were 

recorded pre-experiment using a UP55C-2.5kW Gentec power meter and an Allied 

Vision Manta G-609 B visible camera. Laser power output measurements were taken 

across the range of laser input currents that would be used in the experiments to irradiate 

the sample.  The primary measured powers were 5.45, 8.19, 14.17, 25.22, and 40.75 

Watts at 11.5,12,13,14,15 Amps respectively.   
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Figure 18. Diagram of Experimental setup (top) and actual setup (bottom) used to 
irradiate samples.  Objects left to right:  fiber array with cooling tower, Thorlabs 

optics f = 200 mm, Allied Vision Manta G-609 B visible camera, sample mount, gold 
plated mirror 

 

Beam images were taken using an Allied Vision Manta G-609 B visible camera 

with 2752x2206 pixel resolution, and a Labsphere Spectralon reflectance reference target 

surface in the location of the sample mount pictured above.  Beam images were taken at 

exposure times 3000 – 5000 microseconds.  Noise frames were also taken in which the 

image of the scene was taken without irradiance of the Spectralon surface.  These noise 
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frames were used to do a background subtraction and distinguish signal from noise.  

Pixels that were less than the average background noise plus five standard deviations 

were zeroed, so noise data was not scaled with the power.  The camera had a spectral 

bandpass filter at 760 nm and a 3.0 ND filter to prevent noise from other sources and 

saturation.  The beams were spatially calibrated using a Thorlabs NBS 1963A resolution 

target.  The spatial resolution was found to be 0.067 x 0.049 mm2 per pixel.  These 

resolutions were not equal due to the projection of the observed surface on the focal plane 

array at a non-normal viewing angle.  

 

 

Figure 19. Left:  Normalized Beam Profile, Right: Actual Beam incident on a 3.10 
test sample. 

 
The relative pixel intensity of the beam profile was converted to a relative spatial 

intensity profile by dividing pixel values by the pixel area. The relative intensity profile 

was then normalized so that the relative intensity, seen in Figure 19, integrated to 1.  The 

normalized beam profile was then multiplied with the power measurements to yield the 

corresponding irradiance profiles for the experiments.  An example of this can be seen 
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below in Figure 20. Beam profiles taken at different laser powers indicated that the 

variations in the beam profile across power and time were not significant enough to affect 

modeling on a 30x30x8 mesh grid. 

 

 

Figure 20. Irradiance profile of 40.75-watt beam from a linear array of 23 diodes.  
The average irradiance was 6.48 𝐖𝐖/𝐜𝐜𝐜𝐜𝟐𝟐, and the peak irradiance was 53.31 𝐖𝐖/𝐜𝐜𝐜𝐜𝟐𝟐 

 
 

Experimental Set Up 

The thermal imagery in this work was collected using a FLIR X6900sc MWIR 

camera that had a 50 mm lens and a 3.8-4.0-μm bandpass filter.  The camera used an 

InSb 640 x 512 element detector array.  The thermal responses of the samples were 

primarily collected at 3 Hz, however 15-Hz, and 30-Hz frame rates were used for some 

samples.  Collection at 3 Hz was used to reduce file size and speed up processing; the 

temporal resolution of 15 and 30 Hz also did not provide additional information.   Spatial 
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resolution was measured to be 0.394 mm/pixel in the x direction and 0.383 mm/pixel in 

the y direction for the front and 0.463 x 0.491 mm2/pixel for the back.  These spatial 

resolutions were determined with the known dimensions of the sample in the thermal 

imagery.  The camera was deliberately focused to the halfway point between the front 

and back images of the sample.  This resulted in a blurring effect that can be seen in the 

front and back spatial distribution curves in the results.   

The camera was non-uniformity corrected using a 4181 Fluke wide area 

blackbody.  The non-uniformity corrections (NUCs) were performed at 1.2 𝑚𝑚𝑚𝑚, 0.27 𝑚𝑚𝑚𝑚, 

0.05 𝑚𝑚𝑚𝑚, and 0.005045 𝑚𝑚𝑚𝑚 to correspond to data collection integration times.  With the 

exception of the shortest integration time, the NUCs used several frames of black body 

radiance at temperatures near the low end and high end of their linear response curves.  

For 0.005045 𝑚𝑚𝑚𝑚, the NUC was performed using a temperature at the bottom of the 

linear region and at 500 ℃ (maximum FLUKE temperature). The NUCs determined the 

median pixel response and set the gain and offsets of the individual pixels to correct the 

scene to the median response.  Additionally, bad pixels were detected based on flickering, 

responsivity, and gains greater than 1.5 or lower than 0.5.  Bad pixels were replaced in 

the output using a two-point gradient method. 

The calibration of the camera was achieved using FLIR’s ResearchIR calibration 

software and an Electro Optical Industries cavity blackbody starting at 35 ℃ and ending 

at 900℃.  The camera collected blackbody imagery with a NUC’d scene and recorded the 

average pixel response for a given radiance at a given temperature.  Calibration frames 

were collected at room temperature, 50-500 ℃ in steps of 50 ℃, and 500, 600, 700, 850, 

900 ℃ at integration times of 1.2 𝑚𝑚𝑚𝑚, 0.27 𝑚𝑚𝑚𝑚, 0.05 𝑚𝑚𝑚𝑚, and 0.005045 𝑚𝑚𝑚𝑚.  The 
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calculated radiance of these scenes was then correlated to the pixel response and linear fit 

functions were built.  The R-squared value for these fit functions were all above 0.999.  

The temperature to radiance relation was then built using a 6-order polynomial to achieve 

the flux to temperature calibration seen in Figure 21.   

 
Figure 21. Calibration for all four integration times using a cavity black body. 

Calibrations for (-) 1.2 ms, (-), .27 ms, (-) .05 ms, (-) .005045 ms. 
  

 

The NUCs and calibrations were done for multiple integration times so a dynamic 

range extension method known as superframing could be used.  Superframing is a 

technique that builds a single frame out of four individual frames with different 

integration times.  Frames within the linear region of the detector response are then 
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averaged into one superframe allowing the user to take advantage of the range of all four 

integration times. 

The calibration was specifically built to have overlap between the scenes, so that 

with superframing the camera would have a continuous dynamic range from 35-1000 ℃.  

The calibration suffered from some slight discontinuities between integration times 

resulting in some sharp, but relatively small, discontinuous jumps in the measured 

temperatures.  The subframes were combined into one superframe by excluding the 

pixels outside the linear response, which was 1400-14000 counts for this detector, and 

then averaging the remaining valid pixels.  This reduced maximal frame rates, however 

the sacrifice in temporal resolution only limited the maximal superframe rate to 120 Hz, 

which was significantly faster than the actual frame rate.  The radiometric temperatures 

captured in these superframes were than corrected with an emissivity to obtain a true 

temperature measurement.   

Unfortunately, the emissivity of the materials used in this work was not measured.  

Due to this, the applied emissivity correction is a best guess and cannot be used to make 

absolute statements about true temperature.   The emissivity correction that was used in 

this work was obtained from the work of Herr et al. where the kinetics and evolving 

thermal properties of carbon fiber composites were investigated.  In Herr et al’s work, the 

emissivity of the material at various stages of degradation was measured and an 

interpolant model of the emissivity as a function of temperature was generated.  For this 

work, this interpolant model was modified to account for the higher decomposition 

temperature of 450 ℃ for cyanate ester resins and can be seen below in Figure 22.  

Without measures of the emissivity, this model is the next best approximation.  In carbon 
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fiber composites, a large portion of the absorptivity, and by extension of Kirchhoff’s law, 

emissivity is dependent on the carbon fibers and the geometry of carbon fiber composites.  

Considering these materials have this in common, temperature corrections from this 

emissivity model should be close to the true temperatures of the samples.  The carbon 

nanotube surface samples may have a larger deviation from this model, so direct 

comparisons between carbon fiber sample temperatures and carbon nanotube surface 

temperatures cannot be made great confidence.   Despite this, conclusions made between 

same surface samples, and conclusions made about the relative temperature evolution of 

the samples should be considered accurate depictions of the evolving temporal behavior 

in thermally degrading laminates exposed to laser irradiation.    

 

Figure 22. The interpolant model of the temperature dependence of emissivity at 3.9 
𝝁𝝁𝒄𝒄. used to make corrections to observed radiometric temperatures. 
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 Using this model, an iterative correction to the emissivity may be used to gain 

better and better estimates of the true temperature.  In this work temperature-emissivity 

iterations were continued until a fractional difference between iterations of .1% was 

achieved.  This typically took 5 iterations or less for the radiometric temperature to 

converge to the best estimate of the true temperature.   The rapidity of convergence can 

be seen in Figure 23, and the change in the temperature estimate between iterations can 

be seen in Figure 24.  It should be noted that in Figure 24 the temperature changes are 

plotted on a log scale, so in locations where convergence was achieved immediately, the 

plot does not display a value.    

 

 

 

Figure 23.  Iterations of radiometric temperature until convergence to the best true 
temperature estimate.  Iteration 0 is assuming the emissivity is 1 at all temperatures. 
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Figure 24.  Change in temperature between iterations.  As iterations progress the 
temperature changes become increasingly small, eventually converging to the best 
estimate for the true temperature, and the true emissivity at that temperature.  In 

cases where the convergence is immediate, the change between iterations is zero and 
is not plotted on the log plot.   

 

Considering that this model was measured for carbon fiber epoxy composites, there is 

an unknown uncertainty in the temperatures reported in this work.  To provide some 

clarity, perturbations of the interpolant model emissivity is presented in Figure 25.  These 

perturbations demonstrated that an uncertainty in emissivity of ± .3 corresponded with an 

uncertainty in true temperature of ± 213℃ and ± 9.1℃ at 1000 ℃ and 100 ℃ 

respectively, and an uncertainty in emissivity of ± .07 corresponded with a true 

temperature uncertainty of ± 46.21℃ and ± 2.89℃ at 1000 ℃ and 100 ℃ respectively. A 

more detailed depiction of this is plotted in Figure 26.  It should be noted that the 

emissivity for the ± .3 perturbation never exceeded 1, so at maximum the upper limit on 

the emissivity perturbation was + .25. 
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Figure 25.  Different estimates of the true temperature obtained using perturbations 
of the interpolant model.  From top to bottom, (-.) 𝝐𝝐𝒄𝒄𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎− .𝟑𝟑, (--) 𝝐𝝐𝒄𝒄𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎− .𝟎𝟎𝟎𝟎, (--) 
𝝐𝝐𝒄𝒄𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎,  (--) 𝝐𝝐𝒄𝒄𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎+.𝟎𝟎𝟎𝟎, (--) 𝝐𝝐𝒄𝒄𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 = 1.  The solid blue line was the correction used 

in this work. 
 

 

Figure 26.  Uncertainty in Temperature obtained by perturbing the interpolant 
model by 𝝐𝝐 ± .𝟎𝟎𝟎𝟎 and 𝝐𝝐 ± .𝟑𝟑.  It should be noted the emissivity never exceeded 1. 
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Test Matrix 

The carbon fiber, carbon nanotube, and hybrid laminates were irradiated by a 

diode stack of (23) 30 W narrow linewidth laser diodes centered at a wavelength of 780 

nm.  Except for sample 1.1, all samples were irradiated with increasing irradiance levels 

until thermal degradation was observed.  The average irradiance steps were 0.87, 1.30, 

2.25, 4.01, 6.48 𝑊𝑊/ 𝑐𝑐𝑚𝑚2.  These corresponded with peak irradiances in the beam profile 

of 7.13, 10.72, 18.53, 33.00, 53.31 𝑊𝑊/ 𝑐𝑐𝑚𝑚2.   This was done to estimate through-

thickness thermal conductivity of the material at different degradation stages, and to 

acquire more tests with fewer samples.  Laser exposure was limited to 90 seconds and 

cool-down was recorded for greater than 90 seconds.    A summary of the tests done can 

be seen in Table 4 below.   
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Table 4. Summary of irradiation tests 

 0.87 
𝑊𝑊/ 𝑐𝑐𝑚𝑚2 

1.3 𝑊𝑊/ 𝑐𝑐𝑚𝑚2 2.25 𝑊𝑊/ 𝑐𝑐𝑚𝑚2 4.01 𝑊𝑊/ 𝑐𝑐𝑚𝑚2 6.48 𝑊𝑊/ 𝑐𝑐𝑚𝑚2 

1.1     X 
1.3 X X X X X 
1.5 X X X X X 
2.1 X X X X X 
2.2 X X X X  
2.3 X X X X X 
3.1 X X X X X 
3.2 X X X X X 
3.3 X X X X X 
3.4 X X X X X 
3.5 X X X X X 
3.6 X X X X X 
3.7 X X X X X 
3.8 X X X X X 
3.9 X X X X X 
3.10 X X X X X 
3.11 X X X X X 
3.12 X X X X X 

 

Summary 

The composite materials are composed of PAN-based carbon fibers, carbon 

nanotubes produced via chemical vapor deposition, and cyanate ester resin material.  The 

laminates produced were free of matrix or fiber cracking, delamination, and resin 

variations.  Additionally, an X-ray CT scan demonstrated a lack of porosity in the 

laminates.  The thermal imagery was captured using a FLIR X6900sc MWIR camera 

with an InSb focal plane array.  The camera had a pixel resolution of 640x512 which 

resulted in a spatial resolution of 0.394 x 0.383 mm2/pixel for the front and 0.463 x 0.491 

mm2/pixel for the back.  NUCs were performed for each integration time using a Fluke 

wide area black body. The camera was calibrated using an Electro Optical Industries 
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cavity blackbody.  Calibration frames were collected at room temperature, 50-500 ℃ 

with 50 ℃, and 500, 600, 700, 850, 900 ℃ at integration times of 1.2 𝑚𝑚𝑚𝑚, 0.27 𝑚𝑚𝑚𝑚, 0.05 

𝑚𝑚𝑚𝑚, and 0.005045 𝑚𝑚𝑚𝑚.  The radiometric temperatures were then iteratively corrected 

using an interpolant model of the emissivity evolution of the sample.  To aide emissivity 

corrections, a spectral bandpass filter from 3.8-4 𝜇𝜇𝑚𝑚 was used.  A gold-plated mirror was 

used to simultaneously observe back side temperature measurements. Beam profiles were 

taken using an Allied Vision G-609B camera and a Labsphere Spectralon surface.  Power 

measurements were taken using a   2.5 𝑘𝑘𝑊𝑊 Gentec power meter.    Tests were performed 

at a variety of irradiances to observe the laminate thermal response and estimate thermal 

properties at different temperatures.   
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IV. Results and Analysis  

Chapter Overview  

The purpose of this chapter is to report and analyze the results of the irradiation of 

various composite materials. Figures illustrating sample damage and thermal response are 

provided in two types.  The first type for each sample shows the hottest pixel in the scene 

and the temperature evolution that that location on the sample experienced under 

irradiance.  The second figure shows the x and y distribution of the surface temperatures 

with the hot pixel at the center.  The hot pixel was not always the center of the sample, so 

the distribution is sometimes asymmetric in these graphs.  This is due to the asymmetry 

in the beam profile, and variable alignment of the samples.   

Carbon Fiber Laminate Results 

 The orientation of the carbon fibers relative to the beam profile had a significant 

effect on the conduction of heat throughout the composite and the degree of degradation 

of the sample.  Sample 1.1 had a fiber direction that was parallel to the long axis of the 

beam, sample 1.3 had a fiber direction orthogonal to the long axis of the beam, and 

sample 1.5 had a fiber direction 45 degrees from the long axis.  This resulted in 

significantly different distributions of the heat load, and resulted in significant change in 

how much of the composite volume reached degradation temperatures which can be seen 

in Figure 27.   
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Figure 27. Thermal response of the average hottest pixel when the carbon fiber 
samples were exposed to an average irradiance of 6.48 𝑾𝑾/ 𝒄𝒄𝒄𝒄𝟐𝟐, Sample 1.1-0° (--), 

1.3-90°, (--), 1.5-45° (--) 
 

In sample 1.1, the beam was incident on the fewest number of fibers resulting in a 

concentrated absorption of heat in those few fibers.  This resulted in large thermal 

gradients in a high conductivity fiber direction and the rapid conduction of heat to the 

edges of the sample in the x direction, and the slow diffusion of heat out of these 

concentrated fibers into the surrounding polymer material due to the much lower polymer 

matrix thermal conductivity.  This caused a large concentration of heat in the resin 

around these fibers and consequently higher temperatures on the front and backside. 

Diffusion of the heat through the composite in the through thickness direction, mostly 

through resin material, distributed the heat fairly uniformly in the x direction on the 

backside.  The resulting damage can be seen in Figure 28 and the spatial distribution of 

the heat can be seen in Figure 29.  The backside had not quite reached steady state, 

however it seemed to be approaching 370 ℃.  
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Figure 28. Top Left, sample 1.1 with fibers along the long axis of the beam.  Top 
right, sample 1.3 with fibers orthogonal to the long axis of the beam.  Bottom, 

sample 1.5 with fibers 45 ° to the long axis of the beam. 
 

 

 

Figure 29. The spatial distribution of the heat in sample 1.1 (0 degree Orientation) 
when exposed to an average irradiance of 6.48 𝑾𝑾/ 𝒄𝒄𝒄𝒄𝟐𝟐.   (--) 30 secs, (--) 60 secs, (--) 

90 secs.  The horizontal line is the glass transition temperature of 288 ℃. 
 
 



www.manaraa.com

54 

In sample 1.3 the fibers were oriented at 90 degrees to the long axis of the beam 

resulting in the absorption of the radiation into a larger number of fibers.  This resulted in 

rapid heat conduction to the edges in the y-direction and the diffusion of the heat to a 

larger volume of the sample.  This larger diffusion allowed more of the sample to reach a 

higher temperature, but reduced the volume that reached the decomposition temperature 

threshold.  The differences between the diffusion directions can be seen in Figure 30.  

Most notably, the y-direction experienced a relatively uniform distribution of heat due to 

the higher conduction of heat along the fibers compensating for the asymmetric beam 

profile.  This sample reached frontside steady state temperatures of approximately 750 ℃ 

and backside steady state temperatures of 380 ℃. 

 

 
Figure 30. The spatial distribution of the heat in sample 1.3 (90-degree orientation) 
when exposed to an average irradiance of 6.48 𝑾𝑾/ 𝒄𝒄𝒄𝒄𝟐𝟐. (--) 30 secs, (--) 60 secs, (--) 

90 secs. The horizontal line is the glass transition temperature of 288 ℃. 
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 The largest reduction in heating of the backside and subsequently deeper layers, 

was sample 1.5, with fibers running at a 45-degree angle to the long axis of the beam.  

Sample 1.5 increased the number of fibers absorbing incident laser energy (relative to the 

0 deg orientation), but it also had the benefit of having more fiber volume than the 

sample in 1.3.  In sample 1.3 the fibers could conduct heat over 1.269 cm of fiber before 

reaching the edges of the sample.  However, in sample 1.5 this was increased by a factor 

of 1.414.  This had the effect of making more of the composite volume available for 

quick heat distribution.  This can be seen in Figure 31, which compares the case of 

sample 1.1, 1.3, and 1.5.   

 

 

Figure 31. Sample 1.1 can quickly conduct heat to the area depicted by the thin 
rectangle illustrated top left. Sample 1.3 can quickly conduct heat to the thick 
rectangle depicted top right, sample 1.5 can quickly conduct heat across the 

parallelogram depicted bottom. Sample 1.3 and Sample 1.5 have a factor of 3.9 and 
5.5 more material to effectively conduct heat to. In large scale structures, the edges 
will be at “infinity” and the areas of the top left and bottom shapes will be roughly 

equal.  
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The overall result of this additional reachable thermal mass was a reduction in 

frontside and backside hot pixel steady state temperature and a more even distribution of 

heat load on the backside which seen in Figure 32.  This sample had the least damage of 

the three, which can be seen above in Figure 28.  It should be noted that the edges in 

these tests were not at “infinity,” and that this is a small-scale behavior that should not 

scale to large bulk materials.  If the edges had been at infinity, the fibers in 90-degree and 

45-degree orientations with respect to the beam long axis would have effectively the 

same access to the bulk composite material resulting in more similar behavior.  The 

samples with fibers in the 0-degree orientation would still see some detrimental effect 

because they absorb the heat in fewer fibers bottling heat up at the center.    

 

 

Figure 32. The spatial distribution of the heat in sample 1.5 (45 degree orientation) 
when exposed to an average irradiance of 6.48 𝑾𝑾/ 𝒄𝒄𝒄𝒄𝟐𝟐.   (--) 30 secs, (--) 60 secs, (--) 

90 secs. The horizontal line is the glass transition temperature of 288 ℃. 
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 Both Samples 1.1 and 1.3 exhibited degradation around 480-520 ℃, and the 

backsides were relatively unscathed.  Only Sample 1.1 showed discoloration indicative of 

degradation on the backside. 

 Although fiber direction had the greatest effect in reducing steady state 

temperatures across all tests, fiber direction is largely determined by the load 

requirements of the individual composite structure and is not an available design 

parameter for thermal protection.  In addition, this effect only occurred due to the beam 

asymmetry.  If a symmetric Gaussian beam were to irradiate the samples, then the 

number of fibers absorbing the irradiance would be the same in all cases and 

subsequently the samples would behave more similarly.  However, these tests effectively 

demonstrated how in-plane thermal conductivity can quickly and evenly distribute heat to 

more of the composite resulting in lower peak temperatures and less degradation of the 

composite.   

Carbon Nanotube (CNT) Laminate Results 

 The CNT sheets are composed of tangled carbon nanotubes hundreds of microns 

thick and millimeters long that have a homogenized flow direction in the sample. They 

likewise absorb incoming radiation and conduct it to the surrounding matrix. However, 

the CNTs are smaller and have a higher packing fraction than the fibers. As a result, 

when the resin decomposes and produces volatile organic decomposition products, the 

carbon nanotube layers confine these resin decomposition products, causing gas pressures 

in the laminate to build up enough to cause ply delamination.  This commonly happens in 
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laminates due to gases struggling to diffuse through the tight polymer structure.  In 

cyanate ester resins, this has been shown to produce voids in the material [21].  In these 

samples, it appears that this process is intensified by the CNT sheets due to their tight 

structure, which can be seen in Figure 33, causing extreme bubbling in the samples that 

can be seen below in Figure 34.   

 

  

Figure 33. CNTs at the fracture surface of a 0-degree (left) magnified 1840 times 
and 90-degree (right) laminate sample magnified 3760 times [15]. 
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Figure 34. Top Left, sample 2.1 nanotube alignment along the long axis of the beam.  
Top right, sample 2.2 nanotube alignment orthogonal to the long axis of the beam.  

Bottom, sample 2.3 nanotube alignment 45 ° to the long axis of the beam. 

 
These bubbles continue to grow as the resin degrades, causing a significantly 

large pressure buildup in the material.  The thermal conductivity of the decomposition 

gases is very low and this layer significantly reduces the through-thickness conductivity 

in this region. This leads to rapid frontside heating as the conduction pathway into the 

material has effectively been cut off. The rate of oxidation of the CNT increases at these 

higher temperatures. As the carbon nanotubes degrade and the pressure continues to build 

up in the laminate, eventually structural failure is induced in the carbon nanotube sheet.  

This failure results in a sudden, audible release of organic volatiles causing 

momentary sparks and a short duration flame.  An image of one of the failure sites of 

sample 2.3 (20 plys, 45°) can be seen in Figure 35.  The damage is somewhat obscured 

by the production of rust from the remaining iron catalyst in the carbon nanotube sheets.  

An x-ray fluorescence spectrum was taken to confirm the presence of iron (in addition to 

the bright red coloration) and is shown below in Figure 36. 
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Figure 35. Failure site on sample 2.3.  The carbon nanotube surface layer fails 
suddenly releasing the gas pressure. 

 

 

Figure 36. X-ray fluorescence spectrum of the surface of carbon nanotube sample 
that has been degraded by irradiation. 

 

Pure CNT samples were also tested with the CNTs aligned with the laser spot 

similarly to the pure carbon fiber samples [0° (2.1), 90° (2.2), and 45° (2.3)].  The 

formation of the gas bubble is most easily seen in sample 2.2, (20 CNT plys, 90°), which 

was exposed to 14.17 𝑊𝑊 and formed the gas bubble at approximately 40 seconds, unlike 
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the 20 plys of 0° (2.1) and 20 plys of 45° (2.3) oriented nanotubes when exposed to 14.17 

𝑊𝑊 which did not form a gas bubble when subjected to the same irradiance.  This 

degradation can be seen Figure 37 and the comparable shots at 2.25𝑊𝑊/𝑐𝑐𝑚𝑚2, which 

caused no degradation, for sample 2.1 and 2.3 can be found in the appendix.  

 

 

Figure 37. Repeated exposure at increasing laser irradiance of Sample 2.2, 
exhibiting simple heat diffusion behavior until degradation with average 

2.25 𝑾𝑾/𝒄𝒄𝒄𝒄𝟐𝟐.  Solid lines are frontside curves, dashed lines are backside curves. 
 
 
 In sample 2.2 (20 CNT plys, 90°), 2.25 𝑊𝑊/𝑐𝑐𝑚𝑚2produced simple heating and 

diffusion of heat through the sample for the first 45 seconds.  After this point, resin 

decomposition began and a bubble of these volatile products developed within the 
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laminate that raised the top few layers above the rest.  The trapped gases in the bubble 

structure reduced the contact between layers and decreased the through thickness thermal 

conductivity significantly.  This resulted in a rapid rise in frontside temperature and a 

reduction in backside steady state temperature.  As a result, the backside peak 

temperature cooled down to this new steady state temperature due to radiation losses and 

radial conduction.  The location of this bubble and the size of this insulating layer can be 

seen in the spatial distribution graph and the visible damage seen in Figure 38. 

 

                
Figure 38. The spatial distribution of the heat (left) and the corresponding damage 

(right) in Sample 2.2 (20 ply CNTs 90 degree orientation) when exposed to an 
average irradiance of 𝟐𝟐.𝟐𝟐𝟐𝟐 𝑾𝑾/ 𝒄𝒄𝒄𝒄𝟐𝟐. (--) 30 secs, (--) 60 secs, (--) 90 secs. The 

horizontal line is the glass transition temperature of 288 ℃. 
 
  

 Oxidation is a thermally activated process and the increased surface temperature 

greatly accelerates the oxidation of the CNT layers that form the skin of the bubble. 

Eventually, as described above, the CNTs can no longer contain the high-pressure 
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decomposition gases. The downside of this reaction is the degradation of the material that 

supports the reduction of the backside temperatures. This is most easily seen in sample 

2.1(20 CNT plys, 0°) and 2.3 (20 CNT plys, 45°), at 6.48 𝑊𝑊/𝑐𝑐𝑚𝑚2, which both exhibited 

rapid heating, quick production of organic volatiles, and formation of a protective gas 

bubble.  The thermal response of these samples is shown below in Figure 39 and 40. 

 

 

Figure 39. Thermal response of the average hottest pixel when the 0-degree and 45-
degree 20 ply CNT samples were exposed to an average irradiance of 𝟒𝟒.𝟎𝟎𝟎𝟎 𝑾𝑾/ 𝒄𝒄𝒄𝒄𝟐𝟐. 
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Figure 40. Spatial distribution of heat in sample 2.1 (20 CNT plys, 0°) when exposed 

to an average irradiance of 𝟒𝟒.𝟎𝟎𝟎𝟎 𝑾𝑾/ 𝒄𝒄𝒄𝒄𝟐𝟐.  Delamination concentrated heat in the 
center on the front side and reduced backside steady state temperatures 

significantly. (--) 30 secs, (--) 60 secs, (--) 90 secs 
 

Degradation for sample 2.2 (20 CNT plys, 90°) initiated around 467 ℃, while for 

the other carbon nanotube samples it occurred around 514 ℃.  The backside steady state 

temperatures are inconclusive in the tests of sample 2.1 (20 CNT plys, 0°) and 2.3 (20 

CNT plys, 45°) because it appears the backside was still cooling down to the newly 

established steady state temperature.  However, it can be seen that sample 2.1 reached a 

peak temperature around 430 ℃ and cooled down to 350 ℃ before the laser was turned 

off.  In sample 2.3 there was a similar behavior cooling down to 380 ℃ from 425℃.  In 

sample 2.2 (20 CNT plys, 90°) the backside steady state dropped from 380 ℃ to 360 ℃.  

This is small by comparison to the other two and is likely due to the size of the produced 

delamination seen in Figure 34.  In all cases, heat penetration from laser induced 

degradation was reduced after degradation had occurred. 
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Hybrid Laminate Results 

 The hallmark of composite materials is that they combine the favorable properties 

of the constituent materials to form a more useful material.  The hybrid laminates 

displayed exactly that behavior by utilizing the benefits of both the carbon fiber and the 

carbon nanotubes.  Despite having less mass, density, thickness, and plies than the carbon 

fiber samples, the hybrid samples outperformed them with significantly lower backside 

temperatures in response to the same irradiance. In addition, the hybrid samples with 

carbon fibers on the surface had lower frontside temperatures than the carbon nanotube 

samples, however these samples were more massive than the carbon nanotube samples.   

   To aid understanding of the results, discussion of the hybrid laminates will be 

broken into three subsections.  The first subsection of will consist of the hybrid laminates 

that had 1-3 CNT layers in the center.  Additionally sample 3.1 will also be included on 

all plots for comparison to the hybrid samples because it contains the same carbon fiber 

layers that all hybrid samples contain.   The CNT content of the hybrid samples will be 

annotated with a shorthand notation on the graphs. For example, designation (2,1 CNTs) 

indicates 2 CNT inner layers and 1 CNT outer layer.   The sample designations for all 

samples can be visually seen in Figure 41. and are listed in Table 5 for the first subsection 

of samples. 
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Figure 41. Visual breakdown of the Hybrid Laminate Structure layup.  Hybrid 
Samples are denoted Y,X CNTs indicating Y inner layers and X outer layers. 

 
 

Table 5. Hybrid Samples with 0-3 CNT center layers 

Test # Orientation 
3.1 [0, 90]x4 Stacks 
3.2 [0,90,0,90,CNT,90,0,90,0] 
3.3 [0,90,0,90,CNT,CNT,90,0,90,0] 
3.4 [0,90,0,90,CNT,CNT,CNT,90,0,90,0] 

 

 In all of the hybrid laminate samples, the laminates contained eight carbon fiber 

layers in alternating 0 °, 90 ° directions.  For the carbon fiber sample, sample 3.1, this 

alteration of layers resulted in marginally lower backside temperatures than the 20 ply 

carbon fiber samples of sample 1.1 and 1.3 despite being only eight plies.  The addition 

of CNT layers further reduced the backside temperature with the help of their good in-

plane thermal conductivity and their reduction in through-thickness conductivity caused 

by the layer of trapped gases. Sample 3.2 showed the lowest average backside 

temperatures with a minimum at approximately 285 ℃, however sample 3.4 also reached 
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285 ℃ before laser turn off, so it is hard to tell which sample would have had the lower 

backside steady state temperature.  The individual samples’ thermal response can be seen 

in Figure 42. 

 

 

Figure 42. Thermal response of the average hottest pixel when the hybrid samples 
with 1-3 CNT center layers were exposed to an average irradiance of 6.48 𝑾𝑾/ 𝒄𝒄𝒄𝒄𝟐𝟐. 

The control contained no CNT layers and is annotated in black.  
 

The next subsection of hybrid laminates consists of hybrid laminates that have 

combinations of CNT layers on the outer edges and the center layers.  These samples 

exhibited similar behavior to the carbon nanotube only samples (2.1-2.3) on the front side 

with reduced temperatures on the back side.  These laminate layups are summarized in 

Table 6.   
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Table 6. Hybrid samples with various CNT outer and center layers 

Test #  Orientation 
3.1  [0, 90]x4 stacks 
3.5 [CNT,0,90,0,90,CNT,90,0,90,0,CNT] 
3.6 [CNT,0,90,0,90,CNT,CNT,90,0,90,0,CNT] 
3.7 [CNT,CNT,0,90,0,90,CNT,90,0,90,0,CNT,CNT] 
3.8 [CNT,CNT,0,90,0,90,CNT,CNT,90,0,90,0,CNT,CNT] 

 

These hybrid samples heated up to degradation, followed by bubbling, the bubble 

bursting, and the restoration of interlayer contact laminate plys.  After the destruction of 

the insulating layer the frontside would cool down to steady state temperatures slightly 

below sample 3.1 likely due to the extra material available.  This whole process translated 

into an initial cooling on the backside due to delamination of the surfaces and a 

subsequent increase in temperature when the insulating layer was destroyed.  This can be 

seen in Figure 43.  These samples displayed the highest backside temperatures of the 

hybrid samples despite having more CNTs than the previously discussed samples.  This 

was unexpected because they have more mass and more layers to conduct heat through.  

This may be due to a larger absorptivity in carbon nanotube surface layers coupling more 

heat into the material and causing the behavior of the previous samples to be obscured in 

these samples.  In addition, a larger absorptivity, and by extension emissivity, would 

yield lower true temperature reading when emissivity corrected, so it could be that if 

these had a higher emissivity, a more correct emissivity correction would actually show a 

lower temperature than currently shown.  Ultimately, the higher absorptivity would be 

detrimental to thermal protection and it may be more advantageous to put carbon 
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nanotubes in the layers beneath a carbon nanotube surface.    The thermal response of 

these samples is shown in Figure 43. 

 

 

Figure 43. Thermal response of the average hottest pixel when the hybrid samples 
with 1-2 CNT center and outer layers were exposed to an average irradiance of 
6.48 𝑾𝑾/ 𝒄𝒄𝒄𝒄𝟐𝟐. The control contained no CNT layers and is annotated in black. 

 
 The final subsection of hybrid samples all contained three CNT layers on the 

edges of the material, with 0-3 CNT layers in the center, all denoted (X,3 CNTs).  These 

samples exhibited the sharpest drop in backside temperature after initial heating and did 

better or comparably to sample 3.2 (0,1 CNTs) and 3.4 (0,3 CNTs).  This sharp drop in 

backside temperature, which can be seen in Figure 44, was probably due to the rapid 

formation and duration of the bubbling.   The sample that reduced heat penetration to the 

deeper layers most effectively was sample 3.9 (0,3 CNTs).  This is due to the 

delamination of the top layer reducing heat conduction to the backside.  The laminate 

layups for these samples is annotated in Table 7.  
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Table 7. Hybrid Samples with 3 CNT Layers on the edges, and 0-3 CNT in the 
center layer 

Test #  Orientation 
3.1  [0, 90]x4 stacks  
3.9 [CNT,CNT,CNT,0,90,0,90,90,0,90,0,CNT,CNT,CNT] 
3.10 [CNT,CNT,CNT,0,90,0,90,CNT,90,0,90,0,CNT,CNT,CNT] 
3.11 [CNT,CNT,CNT,0,90,0,90,CNT,CNT,90,0,90,0,CNT,CNT,CNT] 
3.12 [CNT,CNT,CNT,0,90,0,90,CNT,CNT,CNT,90,0,90,0,CNT,CNT,CNT] 

 

 

Figure 44. Thermal response of the average hottest pixel when the hybrid samples 
with three CNT outer layers and 0-3 CNT center layers were exposed to an average 
irradiance of 6.48 𝑾𝑾/ 𝒄𝒄𝒄𝒄𝟐𝟐. The control contained no CNT layers and is annotated in 

black. 
 

A subset of the thermal response curves, at different irradiances, for sample 3.9 

can be seen below in Figure 45.  For this sample, backside steady state temperatures 

approached 270 ℃ under 4.01 𝑊𝑊/𝑐𝑐𝑚𝑚2 of irradiance.  Under 6.68 𝑊𝑊/𝑐𝑐𝑚𝑚2 of irradiance 

however, the sample approached 250 ℃.  This demonstrated an instance where the 

backside of a prospective thermal protection layer would experience lower peak 

temperatures at higher laser powers.   
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Figure 45. (Left) Thermal response curves for sample 3.9 (0,3 CNTs) at 6.48 and 
4.01 𝑾𝑾/𝒄𝒄𝒄𝒄𝟐𝟐. Curves indicate that the heat penetration in a higher irradiance 

exposure was less than the lower irradiance case.  Solid lines are frontside curves, 
dashed lines are backside curves.  (Right) The laminate composition of the sample 

three CNT outer layers with 8 carbon fiber inner layers. 
 
 
 

Summary 
 
 Carbon fiber test samples demonstrated how fiber angle can modify the thermal 

response of a sample subjected to laser irradiation.  This effect happens via the effective 

heat conduction of the thermal load to a larger sample volume.  This is not a viable 

design parameter for thermal protection layers because fiber angle is determined by load 

constraints.  However, this does demonstrate how improved heat conduction via thermal 

conductivity can improve the thermal resistance of a composite material.   This has been 

noted in various studies incorporating CNTs in composite material [7-10].  This effect 

was not seen to a large degree in the CNT and hybrid composite samples, due to a 

different mechanism that occurred.  In samples incorporating CNTs, interlaminar gas 

pressure built up due to the production of organic volatiles in the samples.  Due to the gas 
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pressure, the layers delaminated reducing through thickness thermal conductivity.  This 

thermally isolates the deeper layers effectively shielding them from the thermal 

degradation induced via laser heating.  The cost is the rapid heating of the top layers, 

which accelerates degradation.  The sample that reduced heat penetration the most was 

sample 3.9 (3,0 CNTs), which exhibited rapid cooling to 250 ℃ on the backside when 

exposed to 6.68 𝑊𝑊/𝑐𝑐𝑚𝑚2.  This was lower than the case when sample 3.9 was exposed to 

4.01 𝑊𝑊/𝑐𝑐𝑚𝑚2, in which backside temperatures approached 270 ℃.  The sample that 

experienced the best reduction in heat penetration relative to the addition of CNT layers 

was Sample 3.2 (1,0 CNTs).  The introduction of one CNT layer in the center reduced 

heat by 85 ℃ when compared to the control sample.   
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V.  Conclusions 

Chapter Overview 

The purpose of this chapter is to outline the answers to the investigative questions 

proposed in chapter 1, discuss the significance of the research, and make 

recommendations for future work.   

Investigative Questions 

Table 1 is repeated here for the convenience of the reader. 

Table 1. Summary of Research Objectives and Methodology 

Research Objectives  Methodology 
O1: Characterize Carbon Fiber Thermal 
Response 

Expose samples to various irradiances 
and record thermal response  

O2: Characterize Carbon Nanotube Thermal 
Response 

Expose samples to various irradiances 
and record thermal response  

O3: Characterize Hybrid Samples Thermal 
Response 

Expose samples to various irradiances 
and record thermal response  

 

Q1:  Characterize Carbon Fiber Thermal Response 

 The cyanate ester carbon fiber composites degraded at temperatures between 480 

℃ and 520 ℃.  Fiber angle greatly affected the conduction of heat in the 20 ply carbon 

fiber samples.  A fiber angle of 45° showed a drastic improvement in the distribution of 

the heat load and subsequently protected sample 1.5 extremely well.  Unfortunately, this 

protection mechanism is not generalizable to other engagements because the response of 

a particular composite geometry depends on the asymmetry of the beam.    Additionally, 

the edges were not approximately at infinity which would likely be the case in larger 

structures.  Structures with edges at infinity would experience lower peak temperatures 
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and subsequently less degradation because the heat is not trapped at the center.  In these 

cases, the effect of fiber angle on heat conduction will become increasingly small because 

the effective area of heat conduction due to fiber angle variation will be mitigated 

provided the number of fibers absorbing the radiation remains.  This was the case for the 

90° and 45° oriented carbon fiber samples. This would not be the case for carbon fiber 

samples in the 0° orientation, since the number of fibers absorbing the radiation is 

significantly reduced by the fiber angle. To the extent that fiber angle orientation affects 

the number of fibers absorbing the radiation, the variation of fiber angle could have large 

scale behavior similar to, but to a lesser extent, than the small-scale results shown in this 

work.   

Although fiber angle is not a viable design parameter for thermal protection 

layers, this did display how thermal conductivity can improve the distribution of the heat 

load and protect the sample.  This was supported by the tests of sample 3.1 which was 

composed of eight alternating carbon fiber plys.  These tests showed lower backside 

temperatures than the thicker 20-ply carbon fiber samples.  This was due to the 

alternating fiber directions in each layer, which carried heat away in both x and y 

directions.   This resulted in a more even distribution of heat that allowed the thinner 

sample to exhibit marginally lower peak backside temperatures when exposed to the 

same irradiance. 

Q2:  Characterize the carbon nanotube thermal response 

The cyanate ester carbon nanotube laminates degraded at similar temperature 

thresholds to the carbon fiber composites, but they reached the decomposition 

temperature sooner due to their lower density, mass, and thickness.  When the resin 
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decomposed, the carbon nanotube samples exhibited the formation of a gas pocket behind 

the CNT layer(s) that acted like a reactive armor that activated and thermally cut-off the 

top layers, sacrificing them and protecting the layers underneath.  This insulating layer 

reduced heat flow to the backside and caused a reduction in steady state backside 

temperatures.  This comes at the cost of the top layers which heat up rapidly when forced 

to take more of the heat load and oxidize more rapidly. 

Q3: Characterize the hybrid laminate thermal response 

The surface layers of the hybrid laminate responded as the corresponding layers in 

the previous composites responded.  If the top layer was carbon fiber it degraded 

similarly and reached steady state temperatures on the frontside similar to the control 

sample.  If the surface layers were carbon nanotubes they degraded at similar 

temperatures, but reached them faster than the control and suffered more visible surface 

damage.  This damage was due to similar bubbling that occurred in the carbon nanotubes 

which reduced the backside temperatures significantly in some hybrid samples. 

  The hybrids managed to achieve more favorable properties by utilizing the 

advantages of both materials.  At 6.68 𝑊𝑊/𝑐𝑐𝑚𝑚2, the introduction of one CNT layer at the 

center dropped backside temperatures from 380 ℃ observed in sample 3.1 (no CNTs), to 

285 ℃ in sample 3.2 (1,0 CNTs).  This was further improved upon with other samples, 

most notably sample 3.9 (0,3 CNTs), which showed an even faster cooling of the 

backside surface and an eventual steady state of 250 ℃.  Additionally, the backside 

steady state temperatures in the 6.68 𝑊𝑊/𝑐𝑐𝑚𝑚2 test of sample 3.9 (3,0 CNTs) reached 

lower temperatures than the lower power test at 20.25 𝑊𝑊, which meant that the backside 
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layer and prospective layers below this thermal protection layer would have experienced 

less heating from a higher irradiance.   

 

Significance of Research.   

 Based on previous research, the introduction of CNTs was expected to improve 

the thermal resistance of the composite through an increase of the in-plane thermal 

conductivity of the material [7-10]. This was not largely demonstrated in this work. This 

research showed that the introduction of CNT layers can improve the thermal resistance 

of composite materials by trapping the organic volatiles that are produced during 

decomposition.  This is incredibly advantageous in the context of laser hardening because 

the heat shielding only initiates when laser irradiation is sufficient to induce 

decomposition.  This sacrifices the surface thermal protection layers for the benefit of the 

deeper layers.  With the introduction of one CNT layer in the center, composite backside 

temperatures were reduced by 85 ℃; a reduction that is significant enough to prevent 

random scission and cross linking of the hydrocarbon backbone and triazine ring 

breakdown in material that would have otherwise exceeded 450℃.  With optimization 

, this reactive mechanism could provide laser hardening to composite materials 

preventing degradation and retaining strength.  One added layer increases the composite 

thickness by 70 𝜇𝜇𝑚𝑚 and mass by 94.5 𝑔𝑔/𝑚𝑚2 of material used providing significant 

thermal protection for volumetric and mass increases comparable to a coat of paint 

(69.8 𝑔𝑔/𝑚𝑚2).  Alternatively, this research also suggests that designing thermal protection 

layers that have very high in-plane thermal conductivities and very low through thickness 

conductivities could be an effective strategy to prevent heat penetration to deeper layers.   
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Recommendations for Future Research 

Future work should conduct experiments on different arrangements of carbon 

fiber and carbon nanotube layers to determine more optimal configurations of the 

materials.  The results of this work have shown that a few carbon nanotube layers near 

the surface of a composite would provide a protective effect via a reduction in through 

thickness thermal conductivity but these layers suffer increased degradation due to the 

subsequently higher temperatures.  It may be advantageous to put the carbon nanotube 

layers underneath a couple carbon fiber layers to provide reinforcement and ablative 

protection to the carbon nanotube layer.  This would allow the carbon nanotubes to trap 

the gas, creating the protective effect, while simultaneously suffering less oxidation and 

degradation.  Future experiments should place 1-5 carbon nanotube layers at varying 

depths in a carbon fiber composite material to investigate how to maximize the reduction 

in heat penetration and protection of the carbon fibers.  The optimal depth will likely be 

near the surface where temperatures, and subsequently organic volatile production, are 

the highest.       

Future work should also conduct experiments on thermal protection layers that 

alternate materials with high in plane thermal conductivity and low through thickness 

thermal conductivity.  Materials with this make up would cause a majority of the heat 

load to be at the surface and would subsequently reduce heat penetration.  A great 

insulating material for this would be aero-gel and aero-gel like materials.  Their insulative 

properties could prevent heat penetration and preserve the composite strength of the 

deeper layers.    
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In addition to more laser degradation testing, strength testing should be performed 

on similarly degraded samples to ensure that the reduction in heat penetration resulted in 

a larger preservation of strength.  This could be done on the samples with carbon 

nanotubes at various depths in the composite to find the optimal arrangement for strength 

preservation in in situ engagement scenarios.   
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Appendix 

The appendix contains the family of curves for each of the samples exposed to 

various irradiances.  These graphs are the thermal response of the hottest pixel in the 

scene.   

 

 

 

Figure A. 1 Thermal response of Sample 1.1 (20 plys CF, 0-degree orientation) 
exposed to 6.68 𝑾𝑾/𝒄𝒄𝒄𝒄𝟐𝟐 of irradiance.  Solid lines are frontside curves, dashed lines 

are backside curves. 
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Figure A. 2 Thermal response of Sample 1.3 (20 plys CF, 90-degree orientation) 
repeatedly exposed to various irradiances.  Solid lines are frontside curves, dashed 

lines are backside curves. 
 

 

Figure A. 3 Thermal response of Sample 1.5 (20 plys CF, 45-degree orientation) 
repeatedly exposed to various irradiances.  Solid lines are frontside curves, dashed 

lines are backside curves. 
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Figure A. 4 Thermal response of Sample 3.1 (0 CNT Center Layers, 0 CNT Outer 
Layers) repeatedly exposed to various irradiances.  Solid lines are frontside curves, 

dashed lines are backside curves. 
 

 

Figure A. 5 Thermal response of Sample 3.2 (1 CNT Center Layers, 0 CNT Outer 
Layers) repeatedly exposed to various irradiances.  Solid lines are frontside curves, 

dashed lines are backside curves.  
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Figure A. 6 Thermal response of Sample 3.3 (2 CNT Center Layers, 0 CNT Outer 

Layers) repeatedly exposed to various irradiances.  Solid lines are frontside curves, 
dashed lines are backside curves. 

 

 

Figure A. 7 Thermal response of Sample 3.4 (3 CNT Center Layers, 0 CNT Outer 
Layers) repeatedly exposed to various irradiances.  Solid lines are frontside curves, 

dashed lines are backside curves. 
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Figure A. 8 Thermal response of Sample 3.5 (1 CNT Center Layers, 1 CNT Outer 
Layers) repeatedly exposed to various irradiances.  Solid lines are frontside curves, 

dashed lines are backside curves. 
 

 
Figure A. 9 Thermal response of Sample 3.6 (2 CNT Center Layers, 1 CNT Outer 

Layers) repeatedly exposed to various irradiances.  Solid lines are frontside curves, 
dashed lines are backside curves. 
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Figure A. 10 Thermal response of Sample 3.7 (1 CNT Center Layers, 2 CNT Outer 
Layers) repeatedly exposed to various irradiances.  Solid lines are frontside curves, 

dashed lines are backside curves 
 

 

Figure A. 11 Thermal response of Sample 3.8 (2 CNT Center Layers, 2 CNT Outer 
Layers) repeatedly exposed to various irradiances.  Solid lines are frontside curves, 

dashed lines are backside curves.  
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Figure A. 12 Thermal response of Sample 3.9 (0 CNT Center Layers, 3 CNT Outer 
Layers) repeatedly exposed to various irradiances.  Solid lines are frontside curves, 

dashed lines are backside curves. 
 

 

Figure A. 13 Thermal response of Sample 3.10 (1 CNT Center Layers, 3 CNT Outer 
Layers) repeatedly exposed to various irradiances.  Solid lines are frontside curves, 

dashed lines are backside curves. 
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Figure A. 14 Thermal response of Sample 3.11 (2 CNT Center Layers, 3 CNT Outer 
Layers) repeatedly exposed to various irradiances.  Solid lines are frontside curves, 

dashed lines are backside curves. 
 

 

Figure A. 15 Thermal response of Sample 3.12 (3 CNT Center Layers, 3 CNT Outer 
Layers) repeatedly exposed to various irradiances.  Solid lines are frontside curves, 

dashed lines are backside curves. 
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Figure A. 16 Thermal response of Sample 2.1 (20 CNT plys, 0-degree orientation) 
repeatedly exposed to various irradiances.  Solid lines are frontside curves, dashed 

lines are backside curves. 
 

 

Figure A. 17 Thermal response of Sample 2.2 (20 CNT plys, 90-degree orientation) 
repeatedly exposed to various irradiances.  Solid lines are frontside curves, dashed 

lines are backside curves. 
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Figure A. 18 Thermal response of Sample 2.3 (20 CNT plys, 45-degree orientation) 
repeatedly exposed to various irradiances.  Solid lines are frontside curves, dashed 

lines are backside curves. 
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